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The Problem: Unpaired Data Translation
Transport unpaired distributions π0 (Source) to π1 (Target) via optimal paths without
paired training data.

Challenges:
Standard OT requires many training iterations
Computational cost scales poorly with dimension
Need for bidirectional consistency

Entropic Kantorovich Formulation
We use Entropic Optimal Transport (EOT) to find the coupling Π∗:

Π∗ = arg min
Π

{∫
1
2
∥x− y∥2dΠ(x, y)− ϵH(Π)

}
The dynamic equivalent is the Schrödinger Bridge (SB):

P∗ = arg min
P
{KL(P∥Q)}

subject to marginal constraints P0 = π0,P1 = π1, where Q is the (
√

ϵBt).

Parameter ϵ regulates the trade-off between shortest path and diffusion
smoothness.

Theoretical Projections
The SB solution alternates between two projection spaces:

Reciprocal Projection (projR): Ensures path belongs to reciprocal class P = P0,1Q|0,1.
This fixes the bridge structure:

X̂t = Interpt(X0, X1, Z) = (1− t)X0 + tX1 +
√

ϵt(1− t)Z
where Z ∼ N (0, I).

Markovian Projection (projM): Finds drift field v∗t (xt) preserving marginals:

v∗t (xt) = EP[X1|Xt = xt]− xt

1− t

The process follows: dX∗t = v∗t (X∗t )dt +
√

ϵdBt.

We thus define the empirical training objectives:

ℓ→(θ; t, X1, X̂t) = 1
B

B∑
i=1

∥∥∥v→θ (ti, X̂i
t)− (Xi

1 − X̂i
t)/(1− ti)

∥∥∥2

ℓ←(θ; t, X0, X̂t) = 1
B

B∑
i=1

∥∥∥v←θ (1− ti, X̂i
t)− (Xi

0 − X̂i
t)/ti

∥∥∥2

The α-DSBM Algorithm
Key Innovation: α-DSBM introduces a flow with step size α ∈ (0, 1]:

P̂n+1 = (1− α)P̂n + αprojR(projM(P̂n))

Two-Phase Training Strategy:
1. Pretraining Phase: Optimize bridge matching on raw samples

(X0, X1) ∼ π0 ⊗ π1:

L(θ) = 1
2

[
ℓ→(t1:b, X1:b

1 , X̂1:b
t ) + ℓ←(tb+1:B, Xb+1:B

0 , X̂b+1:B
t )

]
2. Online Finetuning: Incremental updates on θ and EMA parameters θEMA:

SDE Sampling: Generate endpoints X̂1 and X̂0 using vθEMA:
dXt = v→θEMA(t, Xt)dt +

√
ϵdBt, X0 ∼ π0 =⇒ X̂1

dYt = v←θEMA(t, Yt)dt +
√

ϵdBt, Y0 ∼ π1 =⇒ X̂0

Bridge Interpolation (Batch): Sample
t→ ∼ Unif([0, 1])⊗b, Z→ ∼ N (0, I)⊗b→ X̂→t = Interpt→(X̂0, X1, Z→) Sample
t← ∼ Unif([0, 1])⊗b, Z← ∼ N (0, I)⊗b→ X̂←t = Interpt←(X0, X̂1, Z←)
Parameter Update: Update θ with step size α and update EMA:

θ ← θ − α∇θ
1
2

[
ℓ→(t→, X1, X̂→t ) + ℓ←(t←, X0, X̂←t )

]
θEMA = γθEMA + (1− γ)θ

Advantage: The online gradient update avoids expensive repeated Markovian projec-
tions and ensures stability via EMA.

Bidirectional Network Trick
Problem: Traditional methods require two separate networks.

Solution: Single bidirectional network vθ(s, t, x)

Direction Bit: Binary input s ∈ {0, 1}
v→θ (·) = vθ(1, ·) handles forward drift
v←θ (·) = vθ(0, ·) handles backward drift

Experimental Results: 2D Toy Datasets
Test Scenarios: Complex topology mappings

Moons to Blobs

S-Curve to Spiral

Swiss Roll to Moons

Key Observations
Topology Preservation: Successfully recovers complex geometric structures
Robustness: Handles high-variance initial distributions
Quality: Generated samples match target distribution characteristics

Conclusion & Future Directions
Summary: α-DSBM provides computationally efficient Schrödinger Bridge solutions
without multiple full retraining iterations.

Future Work:

Apply it to Black-Box finetuning of diffusion models
Develop sampling-free training procedure
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