Towards Fully FP8 LLM Training at Scale
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FOG variants achieve parity with the BF16 baseline on downstream
benchmarks while training significantly faster.

FP8 format offers 2x theoretical speedup but suffers from:
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- Large outlier activations v . Additional Results
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« Remove Pre-Norm torvelEten : 100 Consummed Tokens B Flexible choice of the activation function: The proposed architectures support
both pointwise activations (xIELU, GeLU) and gated activations (SwiGLU). Unlike base-
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- Freeze QK regularization gains EfflClenCy Galns naviour, FOG-max, using xIELU, remains stable throughout training.
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Interestingly, larger models
consistently diverge later than
smaller models. What factors could

high architectural
flexibility, requiring only
minimal tweaks.

- FOG-max: fast, highest downstream
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« FOG-opt: fast, high quality . account for this increased o
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