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Context

FP8 format offers 2× theoretical speedup but suffers from:
Limited dynamic range
Large outlier activations
Late-stage divergence issues

Prior Work: Fall back to BF16 attention or/and fine-grained kernels.

Our Solution: We introduce robust yet simple Transformer architec-
tures that drastically reduce activation outliers enabling FP8 attention &
MLP computations, without downstream performance tradeoff.

FOG: Fast and Outlier-Guarded
Architectures

A few simple modifications:
-

Remove Pre-Norm
Use Post-Norm
Freeze QK regularization gains
Upweight embeddings and use
layerscale (good practices)

-
-
Three main variants:

FOG-max: fast, highest downstream
quality
FOG-opt: fast, high quality
FOG-flash: fastest, high quality

FOG

Entropy Reg. 

Core attention

Q K V

Projection

Normalization

Act.

Normalization

Linear

Linear

Kurtosis and Stability
Kurtosis as early warning metric:
Kurtosis measures outlier presence: kurt(x) = µ[x4]

σ2[x2]

Tracked activations: QKV projections, FFN inputs, block outputs
Signal: Kurtosis can diverge much earlier than the loss
FOG advantage: Orders of magnitude lower kurtosis vs. baseline
Stable patterns: Sub-linear to logarithmic growth
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FOG-max Llama3

-
-
All baselines exhibit early
divergence with FP8
attention. Conversely, we
scaled a 1.5B FOG
variant up to 450B
tokens (30x Chinchilla).

0 100 200 300 400

Consumed Tokens ×109

2.2

2.3

2.4

2.5

2.6

2.7

2.8

L
os

s

FOG-max (FP8DPA) Llama3 (BF16)

Efficiency Gains
-
-
FOG variants achieve
unprecedented
throughput gains with
high architectural
flexibility, requiring only
minimal tweaks.

-
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FOG variants achieve parity with the BF16 baseline on downstream
benchmarks while training significantly faster.

Additional Results
Long context: the dot product attention tends to dominate FLOPs with long context.
Computing it in FP8 yields a significant throughput boost.
-

4K 8K 16K
Context Length (K tokens)

1.20×

1.25×

1.30×

1.35×

1.40×

1.45×

1.50×

Sp
ee

du
p 

ov
er

 L
la

m
a 

BF
16

1.43×

1.39×

1.39×

1.34×

1.39×

1.31×

+4.1 pp

+4.9 pp

+7.6 pp

FOG's Advantage Over FP8 Baseline (SSwiglu)

FOG-opt (FP8DPA)
Llama+SSwiGLU (FP8)

Advantage Gap

-
MoEs: We show FOG’s stability, efficiency, and performance generalize to the MoE
setting.
Flexible choice of the activation function: The proposed architectures support
both pointwise activations (xIELU, GeLU) and gated activations (SwiGLU). Unlike base-
line Llama that suffer from late-stage divergence because of SwiGLU’s quadratic be-
haviour, FOG-max, using xIELU, remains stable throughout training.
We also demonstrate successful FOG-SwiGLU training.
Memory efficiency: FOG trains smoothly with FP8 optimizer states (instead of
FP32), enabling considerable memory savings without compromising training stabil-
ity.-
-
Intriguing pattern:
Interestingly, larger models
consistently diverge later than
smaller models. What factors could
account for this increased
robustness?

-
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